Determining the Probability of a Good Day for Sowing Cotton

Task 3 - Calculating probability and conditional probability

Calculating Probabilities using a Venn Diagram and a Two-way Table
Probabilities are proportions (i.e. fractions). They indicate what proportion of times a particular outcome is expected to occur.

Venn diagrams and two-way tables can be used to calculate a probability and/or a conditional probability of something occurring.
The thing that occurs is called the outcome.
The number of times that an outcome occurs is its frequency.
The relative frequency of an outcome is its frequency expressed as a fraction of the largest possible number of times it could have occurred.

The probability of an outcome occurring in the future can be considered to be its relative frequency (the proportion of times it occurred in the past), assuming that nothing changes.

The relative frequency of an outcome is also called its experimental probability.
It is calculated as:

Experimental Probability of an outcome $=\frac{\text { The frequency of the outcome }}{\text { The sample space }}$

The sample space is the number of times the "experiment" was done (i.e. the greatest number of times that the outcome could have occurred).

A farmer at Trangie wants to know the relative frequency (probability) of days in a planting season being good for sowing cotton.

There are two conditions which, if satisfied, result in days with a favourable outcome for sowing.
Condition A: Soil temperature at 10 cm depth above $14^{\circ} \mathrm{C}$ at 9am (AEST)
Condition B: Forecast average temperatures for the week following planting on a rising plane.
A day in the cotton planting season may or may not meet these conditions.

In the language of probability, each of these conditions is an event.
Each event has 2 possible outcomes so altogether, the 2 events result in 4 possible outcomes:
$>$ If conditions A and B are both satisfied, it is a green light day, meaning that the farmer should go ahead and sow cotton that day.
$>$ If neither condition is satisfied, it is a red light day, meaning that the farmer should stop and not sow cotton that day.
$>$ If Condition A is satisfied and Condition B is not satisfied it is a brown light day, meaning that the farmer should be cautious about sowing cotton that day.

Foundation Australia

Determining the Probability of a Good Day for Sowing Cotton

$>$ If Condition B is satisfied and Condition A is not satisfied it is an orange light day, meaning that the farmer should be cautious about sowing cotton that day.

Probabilities

Probabilities
Events are mutually exclusive if when one event occurs, it is impossible for another event to also occur. They cannot occur together (mutually).

- Are the two events (a day when soil temperature is greater than $14^{\circ} \mathrm{C}$ and a day when average temperatures for the following week are on a rising plane) mutually exclusive? Why or why not?

Outcomes are mutually exclusive if when one outcome of an event occurs, it is impossible for another outcome of that event to also occur.

- For Event A (whether soil temperature is greater than $14^{\circ} \mathrm{C}$) what are the two possible outcomes?

Are these outcomes, mutually exclusive? Why or why not?
Below is the Venn diagram from Task 2 showing the numbers of the different types of days in the 1992 season (the coldest planting season of the climatic data record).
Set A is the group of days when Condition A was satisfied and Set B is the group of days when Condition B was satisfied.

For each day (a day being an element in the universal set), one of 4 possible outcomes occurs.
The number written in each region of the Venn diagram is the frequency of each outcome.
The number of elements in the universal set (the total of the frequencies) is the sample space.

- How many days are in the sample space?

The notation for the frequency (i.e. the number) of elements in Set A is $n(A)$.
The notation for the probability of an element being in Set A is $P(A)$.
$\mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\text { The sample space }}=\frac{9}{25}$

The probability of a green light day is $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{\mathrm{n}(\mathrm{A} \cap \mathrm{B})}{\text { The sample space }}=\frac{4}{25}$

Determining the Probability of a Good Day for Sowing Cotton

- Shade the Venn diagram above to help you find out which colour of day is represented by each of the following probabilities. Then calculate the probabilities.
- $P\left(A^{\prime} \cap B^{\prime}\right)$
- $P\left(A \cap B^{\prime}\right)$
- $P\left(A^{\prime} \cap B\right)$

Conditional Probabilities

The same data that is in the Venn diagram, is in the two-way table below.

1992	Set A	Set A'	Marginal Totals
Set B	4	11	15
Set B'	5	5	10
Marginal Totals	9	16	25

The shaded cell in the table gives the number of elements in the sample space (the universal set).

Look at the column of the table headed Set A.
The marginal total for Set A tells you that there were 9 days for which Condition A was satisfied.
Of these 9 days, 4 also satisfied Condition B. This is $\frac{4}{9}$ of the days in Set A.
The denominator of the fraction (the sample space) is now restricted to the marginal total, 9.

Look at the column of the table for Set A^{\prime}.
The marginal total for Set A' tells you that there were 16 days for which Condition A was not satisfied. Of these 16 days, 11 did not satisfy Condition B. This is $\frac{11}{16}$ of the days in Set A^{\prime}.

Event A and Event B are dependent events because the outcome of Event A (i.e. whether the day is in Set A or Set A^{\prime}) affects the probabilities of the outcomes of Event B (whether the temperatures for the following week are on a rising plane).
If the day is in Set $A, P(B)=\frac{4}{9}$, whereas if the day is in Set $A^{\prime}, P(B)=\frac{11}{16}$.

Determining thet A Probabsjetity of a Good Day for Sowing Cotton

The probability that a day is in Set B, given that day is in Set A is called a conditional probability, where the day being in Set A is the initial condition.

5

The notation used for $P(B$ given $A)$ is $P(B \mid A)$.
Looking at Venn diagram below, $P(B \mid A)=\frac{P(A \cap B)}{P(B)}=\frac{4}{4+5}=\frac{4}{9}$

The probability that a day is in Set B, given that day is in Set A, is $\frac{\mathbf{4}}{\mathbf{9}}$.
This can be expressed in different ways.

- With a partner, decide whether the following sentences are true or false, i.e. whether they mean the same as The probability that a day is in Set B, given that day is in Set A, is $\frac{\mathbf{4}}{\mathbf{9}}$.

Then share your answers with another pair of people. Convince them that your answers are correct, or be convinced by them that you are incorrect and change your answers.

1) If a day is in Set B, then the probability that it is in Set A is $\frac{4}{9}$
2) If a day is in Set A, then the probability that it is in Set B is $\frac{4}{9}$
3) Given that a day is in Set B, the probability that it is in Set A is $\frac{4}{9}$
4) Knowing that a day is in Set B, the probability that it is also in Set A is $\frac{4}{9}$
5) If you already know that a day is in Set A, the probability that it is in Set B is $\frac{4}{9}$

- What is meant by $\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\prime}\right)=\frac{11}{16}$?
- What is meant by $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$? What is the value of $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ in the 1992 season?
- What is meant by $\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right)$? What is the value of $\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right)$ in the 1992 season?

If events A and B are independent, whether an element is in Set A or not in Set A, has no effect on the probability of it being in Set B or not in Set B.

Determining the Probability of a Good Day for Sowing Cotton

In this case, $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\prime}\right)$
so $P(B \mid A)$ is simply the same as $P(B)$. i.e. $P(B \mid A)=P(B)$
Also, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right)$ so $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$

Independent events are not the same as mutually exclusive events.
Two events are mutually exclusive if the occurrence of one event excludes the occurrence of the other. Mutually exclusive events cannot happen at the same time. In other words an element cannot be in both sets, so for mutually exclusive events $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$.

When events are independent, the conditional probability of Event B occurring given that Event A has occurred, is simply the probability of Event B occurring i.e. $P(B \mid A)=P(B)$.

- With a partner, decide whether the pairs of events below are dependent or independent.

Read information at http://cottonaustralia.com.au/australian-cotton/basics/cotton-facts.
Then share your answers with others so you can convince them or be convinced by them.
(i) Whether a cotton crop is genetically modified, and the quantity of insecticide used on it.
(ii) Whether an area is sown to cotton or left fallow, and the emission of greenhouse gases.
(iii) The weight of a bale of cotton, and what that bale of cotton is used to make.
(iv) Rain occurring on a day at Trangie, and rain occurring on the same day at Narromine.

Probability Trees

Probabilities can be calculated from three different representations:

- Venn diagrams
- Two-way tables
- Probability trees

Probability trees show the possible outcomes by creating a branch for each one.
For planting cotton, there are 2 events: whether Condition A is satisfied (Event A) and whether Condition B is satisfied (Event B).

To begin with, the tree diagram for the 1992 season has 2 branches representing the 2 possible outcomes (Yes and No) for Event A.
$P(A)=\frac{9}{25} \quad P\left(A^{\prime}\right)=\frac{16}{25}$
These probabilities are written on the initial two branches of the probability tree.

Each of these branches then splits into 2, representing the 2 possible outcomes (Yes and No) for Event B, given the outcome for Event A.
$P(B \mid A)=\frac{4}{9} \quad P\left(B^{\prime} \mid A\right)=\frac{5}{9}$

Event A

These probabilities are writtan on the two branches that split from the initial top branch.

- What Ned light day
- What probabilities should be written on the branches that split from the initial bottom branch?

Calculate their values. Then write them on these two branches.

The probabilities on the bottom two branches are not the same as the probabilities on the top two branches because Event A and Event B are not independent events.

The probability of the final outcome (the colour of the day) depends on all the probabilities on the branches that lead to that outcome.

For independent events, $P(A \cap B)=P(A) \times P(B)$
For dependent events, $P(A \cap B)=P(A) \times P(B \mid A)$ so $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$ (as seen on page 3)

- The branches of the green light day outcome are $P(A)=\frac{9}{25}$ and $P(B \mid A)=\frac{4}{9}$

Calculate the probability of a green light day using these two values.

- the probability of a brown light day in the 1992 season

> Yes

- the probability of an orange light day in the 1992 season
- the probability of a reqslight day in the 1992 season.

Event C

Yes
No

No

The two-way table of frequencies in 2000 (a fairly typical planting season) is shown below.

- Draw a probability tree and calculate the probabilitysf each of the four outcomes.
- For this season, could yoU Qave drawn a probability tree with fewer branches?

Yes

No	Yes		
2000	Set A	Set A'	Margilpal Totals
Set B	13	1	14
Set B'	10	0	10

Determining the Probability of a Good Day for Sowing Cotton

Marginal Totals	23	1	24

The two-way table of frequencies in 2006 (the warmest of planting season) is shown below.

- Draw a probability tree and calculate the probability of each of the four outcomes.
- For this season, could you have drawn a probability tree with fewer branches?

2006	Set A	Set A'	Marginal Totals
Set B	12	0	$\mathbf{1 2}$
Set B'	11	0	$\mathbf{1 1}$
Marginal Totals	$\mathbf{2 3}$	$\mathbf{0}$	$\mathbf{2 3}$

- A farmer with a small property is interested in the probability of a green light day occurring. Does this probability vary much between seasons?
- A farmer with a large property is interested in the probability of a green light or a brown light or an orange light day occurring as he will sow on any of these days.
Calculate the probability of this occurring on a day in the 1992 season, the 2000 season and the 2006 season. Does this probability vary much between seasons?
- If the average soil temperature and the average air temperature over a planting season at Trangie increase in the future
- would you expect the probability of green light days to increase or decrease? Why?
- would you expect the probability of red light days to increase or decrease? Why?

